Strong disorder fixed points in the two-dimensional random-bond Ising model

نویسندگان

  • M. Picco
  • A. Honecker
چکیده

The random-bond Ising model on the square lattice has several disordered critical points, depending on the probability distribution of the bonds. There are a finite-temperature multicritical point, called Nishimori point, and a zerotemperature fixed point, for both a binary distribution where the coupling constants take the values ±J and a Gaussian disorder distribution. Inclusion of dilution in the ±J distribution (J = 0 for some bonds) gives rise to another zero-temperature fixed point which can be identified with percolation in the non-frustrated case (J ≥ 0). We study these fixed points using numerical (transfer matrix) methods. We determine the location, critical exponents, and central charge of the different fixed points and study the spin-spin correlation functions. Our main findings are the following: (1) We confirm that the Nishimori point is universal with respect to the type of disorder, i.e. we obtain the same central charge and critical exponents for the±J and Gaussian distributions of disorder. (2) The Nishimori point, the zero-temperature fixed point for the ±J and Gaussian distributions of disorder, and the percolation point in the diluted case all belong to mutually distinct universality classes. (3) The paramagnetic phase is re-entrant below the Nishimori point, i.e. the zero-temperature fixed points are not located exactly below the Nishimori point, neither for the ±J distribution, nor for the Gaussian distribution. PACS numbers: 75.50.Lk, 05.50.+q, 64.60.Fr Unité mixte de recherche du CNRS UMR 7589. Unité mixte de recherche du CNRS UMR 5672 associée à l’Ecole Normale Supérieure de Lyon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics and transport in random quantum systems governed by strong-randomness fixed points

We present results on the low-frequency dynamical and transport properties of random quantum systems whose low temperature (T), low-energy behavior is controlled by strong-disorder fixed points. We obtain the momentumand frequency-dependent dynamic structure factor in the random singlet ~RS! phases of both spin-1/2 and spin-1 random antiferromagnetic chains, as well as in the random dimer and I...

متن کامل

Phase diagram and critical exponents of a Potts gauge glass.

The two-dimensional q-state Potts model is subjected to a Z(q) symmetric disorder that allows for the existence of a Nishimori line. At q=2, this model coincides with the +/- J random-bond Ising model. For q>2, apart from the usual pure- and zero-temperature fixed points, the ferro/paramagnetic phase boundary is controlled by two critical fixed points: a weak disorder point, whose universality ...

متن کامل

Wang-Landau study of the 3D Ising model with bond disorder

We implement a two-stage approach of the Wang-Landau algorithm to investigate the critical properties of the 3D Ising model with quenched bond randomness. In particular, we consider the case where disorder couples to the nearest-neighbor ferromagnetic interaction, in terms of a bimodal distribution of strong versus weak bonds. Our simulations are carried out for large ensembles of disorder real...

متن کامل

Nishimori Point in Random-bond Ising and Potts Models in 2d

We study the universality class of the fixed points of the 2D random bond q-state Potts model by means of numerical transfer matrix methods. In particular, we determine the critical exponents associated with the fixed point on the Nishimori line. Precise measurements show that the universality class of this fixed point is inconsistent with percolation on Potts clusters for q = 2, corresponding ...

متن کامل

Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice

In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4),  ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006